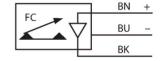
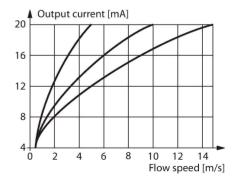


FCS-M18-LIX Flow Monitoring – Immersion Sensor with Integrated Processor


Technical data

ldent. no.	6870707
Type	FCS-M18-LIX
Mounting	Immersion sensor
Air Operating Range	0.515 m/s
Stand-by time	2040 s
Setting time	typ. 2 s
Temperature gradient	≤ 200 K/min
Medium temperature	-20+70 °C
Ambient temperature	-20+70 °C
Operating voltage	19.228.8 VDC
Current consumption	≤ 70 mA
Output function	Analog output
Short-circuit protection	yes
Reverse polarity protection	yes
Current output	420 mA
Load	200500 Ω
Protection class	IP67
Design	Immersion
Housing material	Metal, CuZn
Sensor material	Brass, brass, nickel-plated
Electrical connection	Cable
Cable length (L)	2 m
Core cross-section	3 x 0.5 mm ²
Process connection	M18 × 1

Features


- Flow sensor for gaseous media
- Calorimetric principle
- Adjustment via potentiometer
- Power-on LED
- Nickel-plated brass sensor
- DC 3-wire, 19.2...28.8 VDC
- 4...20 mA analog output

Wiring diagram

Functional principle

Our insertion - flow sensors operate on the principle of thermodynamics. The measuring probe is heated by several °C as against the flow medium. When fluid moves along the probe, the heat generated in the probe is dissipated. The resulting temperature is measured and compared to the medium temperature. The flow status of every medium can be derived from the evaluated temperature difference. Thus TURCK's wear-free flow sensors reliably monitor the flow of gaseous and liquid media.

Technical data

Power on display	LED, green